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We establish upper bounds for the spectral gap of the stochastic Ising model at
low temperatures in an l× l box with boundary conditions which are not purely
plus or minus; specifically, we assume the magnitude of the sum of the bound-
ary spins over each interval of length l in the boundary is bounded by dl, where
d < 1. We show that for any such boundary condition, when the temperature is
sufficiently low (depending on d), the spectral gap decreases exponentially in l.
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1. INTRODUCTION

1.1. General Background and Heuristics

We begin with an informal description; full definitions will be given below.
Consider the stochastic Ising model (Glauber dynamics) in an l× l box
L(l), below the critical temperature. At equilibrium, the typical configura-
tion has one or more macroscopic regions each resembling one of the two
infinite-volume pure phases (plus phase or minus phase) except very near
the boundary; these regions are arranged so as to minimize the surface
energy of any interfaces between them. Thus in nearly every small sub-
region, the equilibrium distribution m=mbL(l), w (at inverse temperature b,
under boundary condition w) is roughly either the plus phase, the minus



phase or a distributional mixture of the two. This equilibrium may take a
long time to be reached, if the box is large. The rate of convergence is
described by the spectral gap, denoted gap(L(l), w, b), which is the
smallest positive eigenvalue of the negative of the generator of the dynam-
ics. More precisely, for S( · ) the associated semigroup and || · ||m the L2(m)
norm, gap(L(l), w, b) is the largest constant D such that

>S(t)f−F f dm>
m

[ >f−F f dm>
m

e −Dt for all f ¥ L2(m) and t \ 0.

For pure boundary conditions, say all plus, at subcritical temperatures
the spectral gap is believed to be of order l −2 [FH87]. The spectral gap
can be very sensitive to the boundary condition, however. For example,
removing as few as O(log l) plus spins near each corner of L(l) (leaving
the boudary there free, or minus) yields a gap much smaller than l −2, and
removing El plus spins from each corner, for some positive E, yields a
gap which decreases exponentially in l [Al00]. These phenomena are
outgrowths of the fact that the boundary conditions are not well mixed, the
free boundary or minus spins being concentrated in short intervals at the
corners. More mixed boundary conditions are considered in [HY97],
where it is shown that if the boundary condition w satisfies

:C
y ¥ I
wy
: [ dl/2 for every interval I in “exL(l) (1.1)

with d < 1, then

gap(L(l), w, b) [ B1.2 exp(−bl/C1.2), l=1, 2,..., (1.2)

where B1.2=B1.2(b) > 0 and C1.2 > 0. Here “exL(l) denotes the exterior
boundary; see (1.8). One can allow the boundary spins wy to take values in
the continuum [−1, 1], with wy=0 representing the free boundary condi-
tion at site y. The condition (1.1) is somewhat restrictive, however; for
example, it does not allow the long intervals of boundary plus spins which
appear in the above-mentioned results from [Al00]. In this paper we
establish (1.2) under a ‘‘mixed boundary’’ hypothesis much weaker than
(1.1).

The importance of the geometry of boundary spin locations can be
seen in comparing the result in [Al00], giving exponential decay of the gap
when El plus spins are removed at each corner, to a result of Martinelli
[Mar94] which states that when one side of the square has all-plus
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boundary condition, and the other 3 sides have free boundary, at sufficiently
low temperatures one has

exp(−C(b, E) l
1
2+E) [ gap(L(l), w, b) for E > 0, l=1, 2,... . (1.3)

In the latter case there are many fewer plus spins but the gap is much
larger, meaning the convergence to the equilibrium plus phase is much
faster.

The heuristics of the gap are rooted in the ideas of energy barriers and
traps. From certain starting configurations, to reach a typical equilibrium
configuration, one must pass through a set of configurations for each of
which the total energy is greater than either the typical starting or equilib-
rium total energies. An energy barrier is such a set of high-energy configu-
rations; the height of the barrier is the typical additional energy of the
barrier configurations relative to the starting configurations. A trap is a
set of starting configurations from which one cannot reach equilibrium
without crossing an energy barrier. (We do not make formal definitions
here, as we will not use these concepts other than descriptively.) Typically
one expects the gap to be exponentially small in the height of the energy
barrier that must be crossed, for a trap of which the probability is ‘‘not too
small.’’ Often traps are related to the existence of macroscopic regions of
the ‘‘wrong phase,’’ that is, say, regions of minus phase when the equi-
librium is purely the plus phase. For example, in the ‘‘corners-removed’’
context of [Al00], a trap is formed by the configurations in which there is
an ‘‘X’’ of minus phase connecting the four free-boundary corner regions,
and the height of the associated energy barrier is proportional to the length
of the corner regions. In the above ‘‘three-sides-free’’ example of Martinelli,
however, say with the plus spins on the right side of the square, there is no
real energy barrier because, starting from the minus phase, a region of plus
phase can sweep leftward, maintaining an approximately vertical interface,
until it covers the full square.

Consider now a boundary condition w which is ‘‘well-mixed’’ in the
sense that

: C
y ¥ I
wy
: [ d |I| (1.4)

for every ‘‘sufficiently long’’ interval I in the boundary of L(l), with d < 1,
and suppose w favors the plus phase (more precisely, the magnetization at
the center of the square is nonnegative.) If the system is started entirely in
the minus phase, we expect the region of minus phase (the ‘‘droplet’’) to
pull away from at least one side of the boundary and then shrink to
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nothing, at which time equilibrium is essentially reached. When the droplet
initially fills L(l), the energy associated to its surface (this surface being
essentially “exL(l)) is at most 8dl, by (1.4). When one side of the droplet
has pulled only slightly away from the boundary, however, the surface
energy of that side becomes essentially twice its length (provided the tem-
perature is very low), hence the surface energy of the whole droplet is at
least about (6d+2) l. Thus there is an energy barrier; the droplet will tend
to stick to the boundary, meaning the minus phase is a trap. Though we do
not make these particular heuristics rigorous in our proofs, they are what
underlie our main result.

For fixed w satisfying (1.4), at higher but still subcritical temperatures,
one does not expect this phenomenon of sticking to the boundary to occur.
This is because the surface energy (appropriately defined using surface
tension and coarse-graining) of the droplet is no longer essentially twice its
length; a diagonal interface has significantly less surface energy than
combined horizontal and vertical interfaces having the same endpoints.
This means the droplet should be able to pull away from the boundary,
first from the corners, without the crossing of an energy barrier. We will
not investigate this type of behavior here.

Additional existing results at subcritical temperatures include the
following. Thomas [Tho89] proved that in general dimension d, for free
boundary conditions (w — 0), for sufficiently large b,

gap(L(l), w, b) [ B1.5 exp(−bld−1/C1.5) l=1, 2,..., (1.5)

where B1.5=B1.5(b, d) > 0 and C1.5=C1.5(d) > 0. For d=2, Cesi et al.
[CGMS96] prove (1.5) with w — 0 for all b > bc, where bc is the inverse
critical temparature. For d=2, in contrast with (1.5), it is known that for
b > bc and w —+1,

exp(−j(l)) [ gap(L(l), w, b), l=1, 2,..., (1.6)

with a function j(l)=o(l
1
2+E) as l q., for all E > 0. This result was first

obtained by F. Martinelli [Mar94, Mar97]. More recently, Y. Higuchi
and J. Wang [HW99] showed (1.6) with j(l)=C(b)(l ln l)

1
2 . Schonmann

[Sch94, Theorem 5] showed that gap(L(l), w) can shrink no faster than
exponential of O(ld−1); specifically, the spectral gap has the following
general lower bound for all d \ 2 and b > 0:

q(b) l −d exp 1 −4b C
d−1

j=0
l j 2 [ inf

w ¥ Wb

gap(L(l), w, b), l=1, 2,... . (1.7)

Here q(b) is a uniform lower bound for all flip rates.
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1.2. Basic Definitions

The Lattice. For x=(x1, x2) ¥ Z2, we will use both the l1-norm
||x||1=|x1 |+|x2 | and the l.-norm ||x||.=max{|x1 |, |x2 |}. A set L … Z2 is
said to be ap-connected (p=1 or .) if for each distinct x, y ¥ L, we can
find some {x0,..., xn} … L with x0=x, xn=y and ||xj−xj−1 ||p=1
( j=1,..., n). The exterior boundary of a set L … Z2 will be denoted by

“exL={y ¨ L; ||x−y||1=1 for some x ¥ L}. (1.8)

The number of points contained in a set L … Z2 will be denoted by |L|. We
will use the notation L …… Z2 to indicate that L … Z2 with |L| <..
A cube with the side-length l will be denoted by

L(l)=(−l/2, l/2]d 5 Zd. (1.9)

An a.-connected subset of “exL(l) will be called an interval of “exL(l).

The Configurations and the Gibbs States. We define two kind of
spin configurations;

WL={s=(sx)x ¥ L ; sx=+1 or −1}, L …… Z2,

Wb={w=(wy)y ¥ Z2 ; wy ¥ [−1, 1]}.

We are mainly interested in wy ¥ {−1, 0, 1}, but there is no extra work in
allowing wy ¥ [−1, 1]. We will refer an element w of Wb as a boundary
condition. The set of all real functions on WL is denoted by CL. For
L …… Z2 and w ¥ Wb, the Hamiltonian HwL: WL Q R is defined by

HwL(s)=−
1
2 C

x, y ¥ L

||x−y||1=1

sxsy− C
x ¥ L, y ¨ L

||x−y||1=1

sxwy.

We let b > 0 denote the inverse temperature, and let mbL, w denote the corre-
sponding finite-volume Gibbs state.

Stochastic Ising Models. For L …… Z2 and b fixed, we consider
the stochastic Ising model on L, with the flip rate at x in configuration s
under boundary condition w denoted qL(x, s, w). As is usual we assume
boundedness, meaning there exist positive constants q(b) and q̄(b) such that

q(b) [ qL(x, s, w) [ q̄(b), (1.10)

for all L …… Z2 and (x, s, w) ¥ L×WL×Wb, and we assume the detailed
balance condition, also known as reversibility (see [Li85].) Now, fix
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L …… Z2 and w ¥ Wb. The generator of the process is the linear operator
AwL: CL Q CL given by

AwLf(s)=C
x ¥ L

qL(x, s, w){f(sx)−f(s)}, f ¥ CL.

As is well known, it follows from the detailed balance condition that

−mbL, w(fA
w
Lg)=

1
2 C

x ¥ L

C
s ¥ W

mbL, w(s)qL(x, s, w){f(s
x)−f(s)}{g(sx)−g(s)}.

(1.11)

Next, we define

gap(L, w, b)=inf 3 −m
b
L, w(fA

w
Lf)

mbL, w(|f−m
b
L, wf|

2)
; f ¥ CL 4 , (1.12)

which is the smallest positive eigenvalue of −AwL. Considering only indicator
functions in (1.12) we obtain

gap(L, w, b) [
q̄(b)

mbL(l), w(C) m
b
L(l), w(C

c)
C

x ¥ L(l)
C

s ¥ C:sx ¨ C
mbL(l), w(s). (1.13)

Thus any fixed event C gives an upper bound for the gap. Roughly, to
obtain a good bound one wants to choose C to be a trap.

1.3. Statement of Main Results

The following is our main result, improving on the condition (1.1).

Theorem 1.1. Consider a stochastic Ising model on a square L(l)
for which the flip rates satisfy boundedness and the detailed balance
condition. Suppose that 0 < d < 1 and the boundary condition wy ¥

[−1,+1], y ¥ “exL(l) satisfies

: C
y ¥ I
wy
: [ d |I| for every interval I … “exL(l) with |I|=l. (1.14)

Then, there exists b0=b0(d) > 0 such that

gap(L(l), w, b) [ B1.15 exp(−bl/C1.14), (1.15)

for b \ b0 and l=1, 2,..., where B1.15=B1.15(b, d) > 0 and C1.15=C1.15(d)
> 0.
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Condition (1.14) is much milder than (1.1). For example, (1.14) allows
a boundary condition which is +1 for 99 % of the boundary with 1 % zero
on each side. Moreover, condition (1.14) turns out to be optimal in the
following example. For d > 0, consider a boundary condition w ¥ Wb
defined by

wx=˛+1 if x1=[l/2]+1 and
−dl
2
< x2 [

dl
2
,

0 otherwise.

(1.16)

In this example, we see the transition from (1.2) to (1.3) depending on the
value of d. By Theorem 1.1, one sees that (1.2) is true for all d < 1. On the
other hand, it follows from [Mar94, Corollary 4.1] that (1.3) holds true for
d=1.

Theorem 1.1 has the following application to random boundary
conditions.

Corollary 1.2. Suppose that d=2 and that wy ¥ [−1, 1], y ¥ Z2

are i.i.d. random variables with the mean m ¥ (−1, 1). Then, there exists
b0=b0(m) > 0 as follows. For b \ b0, there are constants B1.17=
B1.17(b, m) > 0 and C1.17=C1.17(m) > 0 such that almost surely;

gap(L(l), w, b) [ B1.17 exp(−bl/C1.17) for l=1, 2,... (1.17)

Proof of Corollary 1.2 is similar to that of [HY97, Corollary 2.2.] and
hence is omitted.

2. PRELIMINARIES FOR THE PROOF OF THEOREM 1.1

2.1. Contours

The set B of all bonds in Z2 is defined by

B={{x, y} … Z2; ||x−y||1=1}.

For a set L, we define

BL={{x, y} ¥ B; (x, y) ¥ L2},

“BL={{x, y} ¥ B; (x, y) ¥ L×Lc},

BbL=BL 2 “BL.
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The dual lattice (Z2)* is Z2 shifted by (12 ,
1
2); sites and bonds of this lattice

are called dual sites and dual bonds. x* denotes x+(12 ,
1
2). When necessary

for clarity, bonds of Z2 are called regular bonds. To each regular bond b
there is associated a unique dual bond b* which is its perpendicular bisector.
For A … B we write A* for {e*: e ¥ A}. For c … Bb g

L we set

V(c)= 0
e={x, y}: e* ¥ c

{x, y}, Vex(c)=V(c) 5 “exL.

When convenient we view bonds and dual bonds as closed intervals in R2,
as when referrring to a connected set of (dual) bonds. The number of dual
bonds contained in a set c … B* will be denoted by |c|.

For x ¥ R2 let Q(x)=<2
j=1 [xj−

1
2, xj+

1
2], and for G … Z2 let Q(G)=

1x ¥ G Q(x). A contour is a finite subset c … B* which is of the form “Q(G)
for some finite G … Z2 for which both G and Gc are l1-connected. The set G
is uniquely determined by c and hence is denoted by G(c). As is well
known, for each b ¥ B and m=1, 2,...,

Ä{c: c is a contour with |c|=m and c ¨ b} [ 3m−1. (2.1)

If a contour c is a subset of Bb *
L for some L … Z2, we say c is a contour

in L. For s ¥ WL, e=+ or − and L … Z2, an (E)-cluster in L at s is an
l1-connected component of {x ¥ Z2 : sx=E1}. The outer boundary of a
bounded subset A of R2 is the unique connected component of “A which
is contained in the closure of the unique unbounded component of Ac.
A contour c is said to be an (e)-contour in L at s if c is the outer boundary
of Q(G) for some (e)-cluster G. A contour c is said to be a contour in L at
s ¥ WL if it is either (+)-contour in L at s or (− )-contour in L at s. Note
that the boundary condition does not affect whether a given c is an (e)-
contour in L, under our definition.

2.2. Outline of the Proof of Theorem 1.1

It is easy to check that (1.13) implies that there exists 0 < d2.2 < 1 such
that

: C
y ¥ I
wy
: [ d2.2 |I| for every interval I … “exL(l) with |I| \ d2.2l,

(2.2)

so we henceforth assume (2.2).
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The basic strategy to prove Theorem 1.1 is rather standard [Tho89,
HY97]. We define an event Cl … WL(l) in which a ‘‘large’’ contour is
present, and apply (1.12) with C=Cl. It is thus enough to show that for
large b, mbL(l),w(Cl) is uniformly positive in l (Lemma 2.1 below) and

mbL(l), w(C
c
l)

−1 C
x ¥ L(l)

C
s ¥ Cl, s

x
¨ Cl

mbL(l), w(s)

is exponentially small in l (Lemma 2.2 below). We may assume that

mbL(l), w(s0) \ 0. (2.3)

We fix d1 such that d2.2 < d1 < 1. The event Cl is defined by

Cl={s ¥ WL(l) ; Cl(s) ]”}, (2.4)

where

Cl(s)=3c;
c is a (+)-contour in L(l) at s such that

c 5 “Q(L(l)) ]” and |c| \ 2d1l
4. (2.5)

Thus we must prove the following results.

Lemma 2.1. Assume (2.2) and (2.3). There exists b1=b1(d2.2) > 0
such that

inf
l \ 1
mbL(l), w(Cl) \

1
3 for b \ b1. (2.6)

Lemma 2.2. Assume (2.2) and (2.3). There exists b2=b2(d2.2) > 0
such that

C
x ¥ L(l)

C
s ¥ Cl:s

x
¨ Cl

mbL(l), w(s) [ m
b
L(l), w(C

c
l) B2.7 exp(−bl/C2.7) (2.7)

for b \ b2 and l=1,2,..., where B2.7=B2.7(b, d2.2) > 0 and C2.7=C2.7(d2.2)
> 0.
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Theorem 1.1 follows immediately by plugging (2.6) and (2.7) into
(1.12). In fact, we have for b \max{b1, b2} that

gap(L(l), w, b) [ 3q̄(b) B2.7 exp(−bl/C2.7). (2.8)

3. PROOF OF LEMMAS 2.1 AND 2.2

3.1. Energy Estimates for Contours

The proofs of Lemmas 2.1 and 2.2 are based on energy estimates for
contours, which we present in this subsection. We have to introduce addi-
tional definitions. The right, left, top and bottom sides of the square
Q(L(l)) are denoted by F+1

l , F
−1
l , F

+2
l and F −2

l , respectively. A set of
dual bonds c … Bb *

L is said to be horizontally crossing if c intersects both F −1
l

and F1
l ; vertically crossing is defined analogously. The set c is said to be

crossing if it is either horizontally crossing or vertically crossing.
Suppose that c1,...,cp are contours in L(l). We set

Dc1,..., cpH
w
L(l)(s)=H

w
L(l)(s)−H

w
L(l)(Tc1 p · · · p Tcps), s ¥ WL(l) (3.1)

where we have defined a map Tc: WL(l) Q WL(l) for a contour c by

(Tcs)x=˛ −sx, if x ¥ G(c)

sx, if x ¨ G(c).
(3.2)

Suppose that a contour c is non-crossing. Then c 5 (F i
l 2 F j

l)=” for some
i, j with |i|=1 and | j|=2. Then there exists a unique connected component
c of c0“Q(L(l)) which divides L(l) into two l1-connected components G2
and L(l)0G2 such that G(c) … G2 and F i

l 2 F j
l … “Q(L(l)0G2). We define

c̄ … “Q(L(l)) and the interval I(c) … “exL(l) respectively by

c̄=“Q(L(l)) 5 “Q(G2), I(c)=Vex(c̄). (3.3)

Note that

c̄ ‡ c 5 “Q(L(l)). (3.4)

Note also that bonds in c̄ are in one-to-one correspondence with sites in
I(c) in an obvious way.
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Lemma 3.1.

(a) Let c be a a non-crossing (E)-contour at a configuration s ¥ WL(l).
Then

|c0“Q(L(l))| \ 1
2 |c|+

1
2 |c0(“Q(L(l)) 2 c)|, (3.5)

1
2DcH

w
L(l)(s) \

1
2 |c|+

1
2 |c0(“Q(L(l)) 2 c)|− E C

y ¥ Vex(c)
wy, (3.6)

1
2DcH

w
L(l)(s) \ |c|− E C

y ¥ Vex(c̄)
wy \ 0. (3.7)

(b) Suppose {cj}
p
j=1 are (E)-contours in L(l) at s such that

1
2Dc1,..., cpH

w
L(l)(s) \ c1l−c2 for some ci \ 0 (i=1, 2). (3.8)

Then,

1
2
Dc1,..., cpH

w
L(l)(s) \

c1
c1+8

C
p

j=1
|cj |−c2. (3.9)

(c) Let c, c1,..., cp be non-crossing (E)-contours at a configuration
s ¥ WL(l). Suppose that condition (2.2) is satisfied and that I is an interval
in “exL(l) such that

0
p

j=1
I(cj) … I, (3.10)

d2.2l [ |I| [ C
p

j=1
|cj |+c, (3.11)

where c \ 0 is a constant. Then

1
2Dc1,..., cpH

w
L(l)(s) \ e3.12 max3 l, C

p

j=1
|cj |4−c, (3.12)

where the constant e3.12 > 0 depends only on d2.2.
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Proof. (a) is a straightforward exercise which we omit. To prove (b),
let a=1/(c1+8).

Case 1: a;p
j=1 |cj | [ l. In this case, we obviously have that

1
2Dc1,..., cpH

w
L(l)(s) \ c1a C

p

j=1
|cj |−c2.

Case 2: a;p
j=1 |cj | \ l. In this case,

1
2Dc1,..., cpH

w
L(l)(s) \ C

p

j=1
(|cj0“Q(L(l))|− |cj 5 “Q(L(l))|)

=C
p

j=1
(|cj |−2 |cj 5 “Q(L(l))|)

\ C
p

j=1
|cj |−8l

\ (1−8a) C
p

j=1
|cj |.

Therefore (3.9) follows.
For (c), it is enough to prove (3.8) with some c1 > 0 and c2=c. Recall

that d2.2 < d1 < 1.

Case 1: ;p
j=1 |I(cj)| [ d1 |I|. In this case,

1
2Dc1,..., cpH

w
L(l)(s) \ C

p

j=1
(|cj |− |I(cj)|)

\ |I|− C
p

j=1
|I(cj)|−c

\ (1−d1) |I|−c

\ (1−d1) d2.2l−c,

which implies (3.8) with c1=(1−d1) d2.2.

Case 2: ;p
j=1 |I(cj)| \ d1 |I|. We set A=I01p

j=1 I(cj) so that |A| [
(1−d1) |I|. We then have by (3.7), (3.11), (2.2) that
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1
2Dc1,..., cpH

w
L(l)(s) \ C

p

j=1
(|cj |− E C

y ¥ I(cj)
wy)

\ |I|−c− E C
y ¥ I
wy−|A|

\ |I|−c−d2.2 |I|−(1−d1) |I|

\ (d1−d2.2) d2.2l−c,

which implies (3.8) with c1=(d1−d2.2) d2.2. L

Lemma 3.2. Let c be an (E)- contour in L(l) at a configuration s.

(a) If c intersects with exactly one of the sides F j
l (j=±1, ±2), then

DcH
w
L(l)(s) \ ˛ |{horizontal bonds in c}| if j=±1,

|{vertical bonds in c}| if j=±2.
(3.13)

(b) If G(c) ¨ 0 and |c| < 2l, then

DcH
w
L(l)(s) \ 2|c|/9. (3.14)

Proof. Part (a) is straightforward. Part (b) follows readily from (a)
and the fact that when G(c) ¨ 0 and |c| < 2l, c intersects at most one of the
sides F l

j. L

3.2. Proof of Lemmas 2.1 and 2.2

The proof of Lemma 2.1 is a standard Peierls argument, so we omit it.
For Lemma 2.2, we proceed as follows.

Step 1: Suppose that s ¥ Cl and sx ¨ Cl for some x ¥ L(l). We con-
sider two cases separately at first: sx=1 and sx=−1.

Consider first sx=1. Let c be the outer boundary of the (+)-cluster at
s which contains x. The way the transition from s ¥ Cl to sx ¨ Cl occurs is
that the set Cl(s) contains only the one element c, and the flipping of sx

shortens c or separates c from “Q(L(l)) or makes c break into new shorter
contours. Some of these shorter contours may include dual bonds which
were not part of c at s, but rather were part of (− )-contours inside c at s.
We have then

Cl(s)={c}, (3.15)

x is in or adjacent to V(c); (3.16)
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in fact if either (3.15) or (3.16) fails, then Cl(s)=Cl(sx), contradicting our
assumption that s ¥ Cl and sx ¨ Cl. Further, there are (+)-contours
c1,..., cm and c −1,..., c

−

n (m \ 0, n \ 0, 1 [ m+n [ 4) at the flipped configura-
tion sx, and (− )-contours a1,..., ak (0 [ k [ 1) inside c at s, such that

cj 5 “Q(L(l)) ]”, |cj | < 2d1l, for j=1, ..., m, (3.17)

c −j 5 “Q(L(l))=”, for j=1, ..., n, (3.18)

1c 2 1 0
k

j=1
aj
22 g 11 0

m

j=1
cj 2 2 1 0

n

j=1
c −j 22 … “Q(x), (3.19)

G(c)g 11 0
m

j=1
G(cj)2 2 1 0

n

j=1
G(c −j)2 2 1 0

k

j=1
G(aj)22={x}, (3.20)

where g stands for the symmetric difference of two sets. Each aj, cj and c
−

j

must surround at least one neighbor of x. c1,..., cm and c −1,..., c
−

n are pre-
cisely the (+)-contours at sx which include bonds of c. Let

S−=C
m

j=1
|cj |+C

n

j=1
|c −j|, S+=|c|+C

k

j=1
|aj |.

Using (3.19) it is easy to see that

S+ [ S− [ S++4. (3.21)

We will show that

Dc, a1,..., akH
w
L(l)(s) \ e3.22S+−C3.22, (3.22)

where e3.22=e3.22(d) > 0 and C3.22=C3.22(d) > 0, by using (3.19) and study-
ing the contours c1,..., cm and c −1,..., c

−

n.
Now consider sx=−1. In this case, one possibility is that the flipping

of sx connects together two or three (+)-clusters to create a (+)-cluster
which has a shorter outer boundary than the longest of the original (+)-
clusters had. If we let c denote the outer boundary of the (+)-cluster of x
at sx, this means there are again (+)-contours c1,..., cm and c −1,..., c

−

n (m \ 0,
n \ 0, 1 [ m+n [ 2), and (− )-contours a1,..., ak (0 [ k [ 2) inside c, such
that (3.18)–(3.20) hold, but now c and the aj exist at sx and the cj and c

−

j

exist at s. Further, |c| < 2d1l, and in place of (3.17),

cj 5 “Q(L(l)) ]”, for j=1,..., m, |cj | \ 2d1l for some j. (3.23)
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(The other possiblity when sx=−1 is that only one (+)-cluster (call it C)
at s is contained in the (+)-cluster of x at sx, and the flipping of sx to 1
shortens the boundary of C; this may be taken as another case of the above
with m+n=1 and 0 [ k [ 3.) Here in place of (3.15) we have

Cl(s)={cj: 1 [ j [ m, |cj | \ 2d1l}. (3.24)

Statement (3.16) still holds, and in place of (3.22) we will prove

Dc1,..., cm, c1Œ,..., cnŒ
HwL(l)(s) \ e3.25S− −C3.25, (3.25)

It is easy to see that for fixed x, both for sx=1 and for sx=−1, the sets
{c1,..., cm, c

−

1,..., c
−

n} and {c, a1,..., ak} uniquely determine each other.
We now turn to the proof of (3.22) for sx=1 and (3.25) for sx=−1.

For sx=1 we have using (3.20) that

1
2Dc, a1,..., akH

w
L(l)(s) \

1
2Dc, a1,..., akH

w
L(l)(s)−4

\ 1
2Dc1,..., cm, c1Œ,..., cnŒ

HwL(l)(s
x)−8

= 1
2Dc1,..., cmH

w
L(l)(s

x)+1
2Dc1Œ,..., cnŒH

w
L(l)(Ts

x)−8 (3.26)

where T=Tc1 p · · · p Tcm (Recall (3.2)). Each contour in {cj} is non-cross-
ing, since |cj | < 2d1l. Therefore, we see from (3.6) that for any 0 [ p [ m,

1
2Dc1,..., cmH

w
L(l)(s

x) \ 1
2Dc1,..., cpH

w
L(l)(s

x)+ C
m

j=p+1
( 1

2 |cj |− |cj 5 “L(l)|)

\ 1
2Dc1,..., cpH

w
L(l)(s

x)

\ 0. (3.27)

On the other hand, we have

Dc1Œ,..., cnŒH
w
L(l)(Ts

x)=2 C
n

j=1
|c −j|, (3.28)

since c −j 5 “L(l)=”. We have as a consequence that

1
2Dc, a1,..., akH

w
L(l)(s) \

1
2Dc1,..., cpH

w
L(l)(s

x)+C
n

j=1
|c −j|−8. (3.29)
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Note also that the first term on the right-hand-side of (3.29) is non-negative
by (3.27). For sx=−1, c is non-crossing since |c| < 2d1l, and each aj is
inside c, so it follows from (3.19) that

“Q(x) 2 1 0
m

j=1
cj 2 is non-crossing in Q(L(l)); (3.30)

in particular each cj is non-crossing. Therefore (3.26)–(3.29) remain valid
but with s and sx interchanged; in fact we may replace (3.29) with

1
2Dc1,..., cm, c1Œ,..., cnŒ

HwL(l)(s) \
1
2Dc1,..., cpH

w
L(l)(s)+C

n

j=1
|c −j|. (3.31)

To bound (3.29) or (3.31) from below, we pick a number d2 such that
d2.2 < d2 < d1 and consider the following three cases separately.

Case 1: S+ \ 9l. Here the possible energy gain along “L(l) when T is
applied is not enough to cancel the energy reduction in the interior. Speci-
fically, for sx=1,

1
2Dc1,..., cpH

w
L(l)(s

x) \ C
m

j+1
|cj0“Q(L(l))|− C

y ¥ “L(l)
|wy |

\ C
m

j+1
|cj |−8l. (3.32)

With (3.21) and (3.29) this shows

1
2Dc, a1,..., akH

w
L(l)(s) \ S+−8l−8 \

1
9 S+−8, (3.33)

which proves (3.22). The same argument with (3.31) replacing (3.29) proves
(3.25) when sx=−1.

Case 2: ;m
j=1 |cj | [ (d2/d1) S+. Consider first sx=1. Here by (3.21)

C
n

j=1
|c −j| \ S+− C

m

j=1
|cj | \ 11−

d2

d1

2 S+, (3.34)

which, together with (3.29), proves (3.22) in this case. Using again (3.21),
the same argument with (3.31) replacing (3.29) proves (3.25) when
sx=−1.
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Case 3: ;m
j=1 |cj | > (d2/d1) S+ and S+< 9l. By (3.21), (3.29) and

(3.31) it is enough to prove that

Dc1,..., cpH
w
L(l)(s

x) \ el−c (3.35)

for some e > 0, c \ 0 and 1 [ p [ m. We consider several subcases as
follows.

Case 3.1: ;m
j=1 |cj 5 “Q(L(l))| [ d2.2l. Consider first sx=1. Since

d2l [
1
2(d2/d1) |c| [

1
2(d2/d1) S+ [ 1

2 C
m

j=1
|cj |, (3.36)

we have by (3.27) that

1
2Dc1,..., cmH

w
L(l)(s

x) \ (d2−d2.2) l

which proves (3.35). For sx=−1, in place of (3.36) we use (3.23) to obtain

d2l [ d1l [
1
2 C

m

j=1
|cj |;

otherwise the argument for (3.35) is the same.

Case 3.2: The set “Q(x) 2 (1m
j=1 cj) is non-crossing in L(l) and

C
m

j=1
|cj 5 “Q(L(l))| \ d2.2l. (3.37)

In this case we have

1 0
m

j=1
cj 2 5 (F i

l 2 Fk
l )=”

for some i, k with |i|=1 and |k|=2. Then there exists a connected subset,
say l, of

1 0
m

j=1
cj 2 2 “Q(x)

which divides L(l) into two connected components G2 and L(l)0G2 such
that 1m

j=1 G(cj) … G2 and F i
l 2 Fk

l … “ex(L(l)0G2). Note that the set I defined
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by I=“exL(l) 5 “G2 is an interval. To prove (3.35) by applying (3.12), let us
check (3.10) and (3.11) with p=m. We see from the construction of I that

0
m

j=1
I(cj) … I,

|I| [ |l| [ C
m

j=1
|cj |+4.

On the other hand, we see from (3.37) that

|I| \ C
m

j=1
|cj 5 “L(l)| \ d2.2l.

We therefore have (3.10) and (3.11) with p=m.

Case 3.3: The set “Q(x) 2 (1m
j=1 cj) is crossing in L(l). By (3.30) this

is possible only when sx=1. There exist 1 [ i < j [ 4 and k ¥ {1, 2} such
that

ci 5 Fk
l ]” and cj 5 F −k

l ]”. (3.38)

Let us assume (3.38) with i=1, j=2, and k=1. Then, the set c1 2 c2
cannot be vertically crossing, since |c1 |+|c2 | < 4d1l and c1 2 c2 is already
horizontally crossing. Let us therefore assume that

(c1 2 c2) 5 F −2
l =”. (3.39)

We are now left with two possibilities.

Case 3.3.1: c1 5 F2
l ]” and c2 5 F2

l ]”. In this case, I=I(c1) 2
I(c2) 2 F2

l is an interval. To prove (3.35) by applying (3.12), we will check
(3.10) and (3.11) with p=2. We obviously have

0
2

j=1
I(cj) … I,

|I| \ l.

On the other hand, it is easy to see we have the following injections:

I(c1) 5 F1
l 0 {vertical dual bonds in c1},

I(c2) 5 F −1
l 0 {vertical dual bonds in c2},

F2
l 0 {horizontal dual bonds in (c1 2 c2) 2 “Q(x)}.
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We get |I| [ |c1 |+|c2 |+4 as a consequence. We therefore have (3.10) and
(3.11) with p=2.

Case 3.3.2: c1 5 F2
l=” or c2 5 F2

l=”. Let us assume c1 5 F2
l=”,

so that c1 does not intersect with F j
l, j ] 1. The distance from x to F

−1
l is at

most d1l, and hence the distance from x to F1
l is at least (1−d1) l. This

implies that c1 deviates from F1
l at least by distance (1−d1) l−1. There-

fore, by (3.13),

1
2Dc1H

w
L(l)(s) \ |{horizontal bonds in c1}|

\ 2(1−d1) l−2,

which establishes (3.35) with p=1.

Step 2: Suppose again that s ¥ Cl and sx ¨ Cl. If sx=1, then every
(+)-contour outside c at s has length at most 2d1l, and every (+)- or (− )-
contour inside c does not intersect “Q(L(l)). It follows that

Tc p Ta1 p · · · p Taks ¥ C
c
l. (3.40)

Similarly if sx=−1 then

Tc1 p · · · p Tcm p Tc1Œ p · · · p TcnŒs ¥ C
c
l. (3.41)

Step 3: For x ¥ L(l) and s ¥ Cl with sx ¨ Cl, let C+(s, x) denote the
set of contours {c, a1,..., ak}, defined previously, if sx=1, and let C− (s, x)
= {c1,..., cm, c

−

1,..., c
−

n} if sx=−1. We have by obervations made in Step 1
that

C
x ¥ L(l)

C
s ¥ Cl:s

x
¨ Cl, sx=1

mbL(l), w(s)

[ C
x ¥ L(l)

C
c, a1,..., ak

mbL(l), w

{s: C+(s, x)={c, a1,..., ak}, Dc, a1,..., akH
w
L(l)(s) \ e3.22S+−C3.22} (3.42)

where ;c, a1,..., ak stands for the summation over all possible values of
C+(s, x). Now for fixed x and n there are at most c · 3n possible values of
C+(s, x) for which S+=n. By the standard Peierl’s argument and the
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obervation made in Step 2, we can proceed as follows, provided b is suffi-
ciently large:

C
x ¥ L(l)

C
c, a1,..., ak

mbL(l), w{s: C+(s, x)={c, a1,..., ak},

Dc, a1,..., akH
w
L(l)(s) \ e3.22S+−C3.22}

[ C
x ¥ L(l)

C
c, a1,..., ak

exp(−b(e3.22S+−C3.22))

·mbL(l), w{Tc p Ta1 p · · · p Taks: C+(s, x)={c, a1,..., ak}}

[ C
x ¥ L(l)

C
n \ 2d1l

c · 3nexp(−b(e3.22n−C3.22)) m
b
L(l), w(C

c
l)

[ B3.43 exp(−bl/C3.43) m
b
L(l), w(C

c
l). (3.43)

Essentially the same argument, using C− (s, x) and S− in place of C+(s, x)
and S+, shows that

C
x ¥ L(l)

C
s ¥ Cl: s

x
¨ Cl, sx=−1

mbL(l), w(s) [ B3.44 exp(−bl/C3.44) m
b
L(l), w(C

c
l). (3.44)

We conclude (2.7) from (3.42), (3.43) and (3.44). L
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